Prototype for Reliable, Non-Invasive Pilot Blood Oximeter Expands to Include Communication System
In 2017 the Air Force Research Laboratory’s Mike Moulton, working with Bob Lee from Wright Brothers Institute and Adam Renner, a former AFRL/RH employee, collaborated to build a physiological monitoring system that could be incorporated with a communication earplug for pilot health monitoring. This system uses a dual infrared light source to pick up the signal from the inner ear and would remain stable under rigorous conditions, such as high G loading. This system is designed to also collect six degree of freedom acceleration levels, heart rate, and core body temperature. This gives the pilot freedom to move without sacrificing the quality of the data. Read the original story here.
WBI has made considerable strides to get the In-Ear Physiological Monitor closer to production, and now includes a communication system that will provide further capabilities to pilots. In September of 2018, The Shogun Spark Innovation Cell and 18th Aerospace Medicine Squadron at Kadena AB, Japan engaged WBI to develop and facilitate a CONOPS Workshop and Design Sprint to quickly design and test the in-ear pulse oximeter concept. Two key workshops accelerated production: the first explored existing, off-the-shelf technologies and the second acted as a design sprint. Input from engineers, designers, end-users and medical personnel created a plan to build and test a Minimal Viable Product that would include a system that collects core body temperature, heart rate, pulse ox, head acceleration with a communication system that would allow for integration into the aircraft. This comm system would include pass through hearing, hearing protection, as well as an alerting system for hypoxia and potentially hypothermia. The system would also have the capability to detect an ejection event and send a trigger to a future survival radio to send out pilot health status.

What began as a data-gathering capability during unexplained physiological events in fighter pilots, has emerged into so much more. This technology can give a real-time depiction of pilot health. It can provide rich data that will speed up post-event investigations and prevent new ones. It now includes a communication system that provides clearer messaging, versus mask-muffled radio speak. Should an event result in an ejection, it can travel with the pilot to act as a beacon to rescuers, regardless of the pilot’s state of consciousness. These improvements have all been made possible by the iterative prototyping process in the Maker Hub.